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Introduction/Background

Tim:
> Studied veterinary medicine and molecular biology, focusing on
the determinants of susceptibility to cross-species infection and

zoonotic diseases. Expertise with in vivo and in vitro models; small
molecule inhibitors.

> Scientific Program Director for the Foundation for Food &
Agriculture Research’s (FFAR) Advanced Animal Systems
Challenge Area and ROAR Programs since 2016.

FFAR:

> FFAR is a Federally funded ($385M to date) nonprofit; supports
research addressing food and agriculture challenges via 1:1
matching to non-Federal sources (e.g. State, sovereign, private).

> Relevant portfolio includes investigation of Asparagopsis farming
and in vivo trials for enteric methane mitigation, other projects
mvolvmg animal health / productivity and environmental impact.
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Enteric Fermentation — Background

> Approximately 26.7% of methane (CH4) emissions in the U.S. are attributed to

enteric fermentation in ruminants, corresponding to approximately 2.7% of total
GHG emissions in the US (EPA, 2019).

> Total emissions from global livestock: 7.1 Gigatonnes of Co2-equiv per year,
representing 14.5 percent of all anthropogenic GHG emissions (Gerber, 2013).
39% is attributed to enteric methane= 2.77 Gt Co2-equiv; 5.66% total
anthropogenic GHG emissions.
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Enteric Methane — Chemistry

Plants ===p Carbohydrates / Oligosaccharides

|

Pyruvate

}

« Acetate + 2H.
e Butyrate + 2H.
« Propionate (net incorporation of 2H).

» H inhibits carbohydrate fermentation.

» CH, is the main sink of H in the rumen.

» CO,+8H — CH, +2H20

» 30-50L gas eructation per hr

» Concentration of dissolved H, is near 1 uM
(partial pressure of near 140 Pa)
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Possible Strategies & Considerations

Enzyme inhibitor targets

» methyl-CoM reductases, e.g. 3ANOP

> methyl transferases, e.g. bromoform (= ozone depletion, toxicity)

Vaccination

> Difficult to achieve sufficient antibody levels in rumen (CSIRO)

Genetics/rumen microbiome

» Genetic improvement: reductions per unit volume of meat/milk

» Rumen microbiome poorly heritable; thus can be targeted separately

» Ruminal methanogenic archaea are highly conserved globally

Diet

» High grain, low forage.

> Nitrates. Reduced to nitrite - toxicity

> Producers of propionate (Quinella ovalis), lactate, and succinate
(Fibrobacter, Succinivibrionaceae spp.)

Others options

> Bacteriophages (unlikely due to volume of distribution)

» Hardware-based hydrogen/methane scavengers

> Cofactor competitors (e.g. coenzyme M analogs)
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Enteric Methane - Resources

Rumen Microbial Genomics Network:
http://www.rmgnetwork.org/

Methanotroph Consortium:
http://www.methanotroph.org/wiki/introduction/
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State of the Art Methane Inhibitors

Example 1: 3-Nitrooxypropanol (3NOP)
Established efficacy and safety. ~30% reduction in methane.
Registered in Europe; Not FDA-approved for use in U.S.
No growth promotion/productivity gain; little incentive for adoption without
State/Federal mandates or carbon credits.

Example 2: Garlic oil
Generally recognized as safe (GRAS). May alter rumen microbial populations.
Questionable efficacy; needs controlled trials.
Not registered in EU or U.S,; labeled as a feed “flavoring” and used off-label for
methane reduction.

Example 3: Asparagopsis seaweeds
80-90% methane reduction at low inclusion in diet. MOA unclear.
Possibly has substantial productivity gains; needs to verified.
Regulatory pathway unclear (Drug or Feed Additive? Both FDA).
Safety concerns — bromoform, iodine.
No commercial source and difficult to cultivate.
Rapidly expanding field of startups competing for first in market.
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Enteric Methane - Strategies
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Extra Slide — Rumen Chemistry P

’/'ZADP + 2NAD*
N2 ATP + 2 (NADH + H*)
'

\

Carbohydrates / Oligosaccharides 2 Pynvate
2 (NADH + H*)
l mw ¢ M
2
2 FADH, 2ATP + 2 (NADH + H*
Pyruvate 2 Acetyl CoA 2 Lactate

2ADP + 2 NAD'
2ADP 2 H,0 \2ATP +2 (NADH + H' 1 Lactate ADP
- Acetate (and butyrate) + 2H. 2ATP ATP + 2 NAD' ATP + G0, + Hy

Randomizing pathway Direct reductive pathway

. . . ) 2 Propionate
- Propionate: net incorporation of e DRy i + acotale
ATP
[2 H] ) Reduced cofactors 4 2 $ 2
(NADH or FADH,) 4 2 0 0
. - 0 0 0 1 0
* H2 inhibits carbohydrate :

. Net production (moles) from one mole of hexose
fermentation.

Generation of oxidized cofactors by reduction of carbon dioxide by methanogenic bacteria
NADH + H* =3 NAD* + H,
4(Hp) + CO, = CH; + 2H,0

e CH4 is the main sink of H in the
rumen.

Generation of oxidized cofactors by molecular oxygen arising from the randomizing pathway
2(NADH + H*) + Op —» NAD" + 2 H,0

, https://veteriankey.com/digestion-the-
QM D| plel e fermentative-processes/.
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Extra Slide — Enteric Methane Inhibitors
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Islam and Lee, J Anim Sci Technol 2019; 61(3):122-137
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